Rapid engineering of bacterial artificial chromosomes using oligonucleotides.
نویسندگان
چکیده
A rapid method obviating the use of selectable markers to genetically manipulate large DNA inserts cloned into bacterial artificial chromosomes is described. Mutations such as single-base changes, deletions, and insertions can be recombined into a BAC by using synthetic single-stranded oligonucleotides as targeting vectors. The oligonucleotides include the mutated sequence flanked by short homology arms of 35-70 bases on either side that recombine with the BAC. In the absence of any selectable marker, modified BACs are identified by specific PCR amplification of the mutated BAC from cultures of pooled bacterial cells. Each pool represents about 10 electroporated cells from the original recombination mixture. Subsequently, individual clones containing the desired alteration are identified from the positive pools. Using this BAC modification method, we have observed a frequency of one recombinant clone per 90-260 electroporated cells. The combination of high targeting frequency and the sensitive yet selective PCR-based screening method makes BAC manipulation using oligonucleotides both rapid and simple.
منابع مشابه
Simple generation of site-directed point mutations in the Escherichia coli chromosome using Red®/ET® Recombination
BACKGROUND Introducing point mutations into bacterial chromosomes is important for further progress in studies relying on functional genomics, systems- and synthetic biology, and for metabolic engineering. For many investigations, chromosomal systems are required rather than artificial plasmid based systems. RESULTS Here we describe the introduction of a single point mutation into the Escheri...
متن کاملGenome-wide Copy Number Profiling on High-density Bacterial Artificial Chromosomes, Single-nucleotide Polymorphisms, and Oligonucleotide Microarrays: A Platform Comparison based on Statistical Power Analysis
Recently, comparative genomic hybridization onto bacterial artificial chromosome (BAC) arrays (array-based comparative genomic hybridization) has proved to be successful for the detection of submicroscopic DNA copy-number variations in health and disease. Technological improvements to achieve a higher resolution have resulted in the generation of additional microarray platforms encompassing lar...
متن کاملRapid and Highly Efficient Method for Scarless Mutagenesis within the Salmonella enterica Chromosome
Direct manipulation of bacterial chromosomes by recombination-based techniques has become increasingly important for both cognitive and applied research. Here we demonstrate, for the first time, the combination of the Red recombinase system with I-SceI endonuclease-based selection of successful recombinants after electroporation with short synthetic oligonucleotides. We show the generation of s...
متن کاملPoint mutation of bacterial artificial chromosomes by ET recombination.
Bacterial artificial chromosomes (BACs) offer many advantages for functional studies of large eukaryotic genes. To utilize the potential applications of BACs optimally, new approaches that allow rapid and precise engineering of these large molecules are required. Here, we describe a simple and flexible two-step approach based on ET recombination, which permits point mutations to be introduced i...
متن کاملHigh resolution microarray comparative genomic hybridisation analysis using spotted oligonucleotides.
BACKGROUND Currently, comparative genomic hybridisation array (array CGH) is the method of choice for studying genome wide DNA copy number changes. To date, either amplified representations of bacterial artificial chromosomes (BACs)/phage artificial chromosomes (PACs) or cDNAs have been spotted as probes. The production of BAC/PAC and cDNA arrays is time consuming and expensive. AIM To evalua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genesis
دوره 29 1 شماره
صفحات -
تاریخ انتشار 2001